Discussion Forum | Board Infinity

What are Type1 & Typ2 error?

ML, Error

A type 1 error is also known as a false positive and occurs when a user incorrectly rejects a true null hypothesis. This means that your report that your findings are significant when in fact they have occurred by chance. It is also called as “Alpha error”

A type II error is also known as a false negative and occurs when a user fails to reject a null hypothesis which is really false. Here a user concludes there is not a significant effect, when actually there really is. It is also called as “Beta Error”