Use Self Balancing BST

A Self Balancing Binary Search Tree (AVL, Red Black,… etc) can be used to get the solution in O(nLogn) time complexity. We can augment these trees so that every node N contains size the subtree rooted with N. We have used AVL tree in the following implementation.
We traverse the array from right to left and insert all elements one by one in an AVL tree. While inserting a new key in an AVL tree, we first compare the key with root. If key is greater than root, then it is greater than all the nodes in left subtree of root. So we add the size of left subtree to the count of smaller element for the key being inserted. We recursively follow the same approach for all nodes down the root.

Following is the C implementation.

  • C

#include <iostream>

using namespace std;

#include<stdio.h>

#include<stdlib.h>

// An AVL tree node

struct node

{

`` int key;

`` struct node *left;

`` struct node *right;

`` int height;

``

`` // size of the tree rooted

`` // with this node

`` int size;

};

// A utility function to get

// maximum of two integers

int max( int a, int b);

// A utility function to get

// height of the tree rooted with N

int height( struct node *N)

{

`` if (N == NULL)

`` return 0;

``

`` return N->height;

}

// A utility function to size

// of the tree of rooted with N

int size( struct node *N)

{

`` if (N == NULL)

`` return 0;

``

`` return N->size;

}

// A utility function to

// get maximum of two integers

int max( int a, int b)

{

`` return (a > b)? a : b;

}

// Helper function that allocates a

// new node with the given key and

// NULL left and right pointers.

struct node* newNode( int key)

{

`` struct node* node = ( struct node*)

`` malloc ( sizeof ( struct node));

`` node->key = key;

`` node->left = NULL;

`` node->right = NULL;

``

`` // New node is initially added at leaf

`` node->height = 1;

`` node->size = 1;

`` return (node);

}

// A utility function to right rotate

// subtree rooted with y

struct node *rightRotate( struct node *y)

{

`` struct node *x = y->left;

`` struct node *T2 = x->right;

`` // Perform rotation

`` x->right = y;

`` y->left = T2;

`` // Update heights

`` y->height = max(height(y->left),

`` height(y->right)) + 1;

`` x->height = max(height(x->left),

`` height(x->right)) + 1;

`` // Update sizes

`` y->size = size(y->left) + size(y->right) + 1;

`` x->size = size(x->left) + size(x->right) + 1;

`` // Return new root

`` return x;

}

// A utility function to left rotate

// subtree rooted with x

struct node *leftRotate( struct node *x)

{

`` struct node *y = x->right;

`` struct node *T2 = y->left;

`` // Perform rotation

`` y->left = x;

`` x->right = T2;

`` // Update heights

`` x->height = max(height(x->left),

`` height(x->right)) + 1;

`` y->height = max(height(y->left),

`` height(y->right)) + 1;

`` // Update sizes

`` x->size = size(x->left) + size(x->right) + 1;

`` y->size = size(y->left) + size(y->right) + 1;

`` // Return new root

`` return y;

}

// Get Balance factor of node N

int getBalance( struct node *N)

{

`` if (N == NULL)

`` return 0;

``

`` return height(N->left) - height(N->right);

}

// Inserts a new key to the tree rotted with

// node. Also, updates *count to contain count

// of smaller elements for the new key

struct node* insert( struct node* node, int key,

`` int *count)

{

`` // 1. Perform the normal BST rotation

`` if (node == NULL)

`` return (newNode(key));

`` if (key < node->key)

`` node->left = insert(node->left, key, count);

`` else

`` {

`` node->right = insert(node->right, key, count);

`` // UPDATE COUNT OF SMALLER ELEMENTS FOR KEY

`` *count = *count + size(node->left) + 1;

`` }

`` // 2.Update height and size of this ancestor node

`` node->height = max(height(node->left),

`` height(node->right)) + 1;

`` node->size = size(node->left) +

`` size(node->right) + 1;

`` // 3. Get the balance factor of this

`` // ancestor node to check whether this

`` // node became unbalanced

`` int balance = getBalance(node);

`` // If this node becomes unbalanced,

`` // then there are 4 cases

`` // Left Left Case

`` if (balance > 1 && key < node->left->key)

`` return rightRotate(node);

`` // Right Right Case

`` if (balance < -1 && key > node->right->key)

`` return leftRotate(node);

`` // Left Right Case

`` if (balance > 1 && key > node->left->key)

`` {

`` node->left = leftRotate(node->left);

`` return rightRotate(node);

`` }

`` // Right Left Case

`` if (balance < -1 && key < node->right->key)

`` {

`` node->right = rightRotate(node->right);

`` return leftRotate(node);

`` }

`` // Return the (unchanged) node pointer

`` return node;

}

// The following function updates the

// countSmaller array to contain count of

// smaller elements on right side.

void constructLowerArray( int arr[], int countSmaller[],

`` int n)

{

`` int i, j;

`` struct node *root = NULL;

``

`` // Initialize all the counts in

`` // countSmaller array as 0

`` for (i = 0; i < n; i++)

`` countSmaller[i] = 0;

``

`` // Starting from rightmost element,

`` // insert all elements one by one in

`` // an AVL tree and get the count of

`` // smaller elements

`` for (i = n - 1; i >= 0; i--)

`` {

`` root = insert(root, arr[i], &countSmaller[i]);

`` }

}

// Utility function that prints out an

// array on a line

void printArray( int arr[], int size)

{

`` int i;

`` cout << "\n" ;

``

`` for (i = 0; i < size; i++)

`` cout << arr[i] << " " ;

}

// Driver code

int main()

{

`` int arr[] = {10, 6, 15, 20, 30, 5, 7};

`` int n = sizeof (arr)/ sizeof (arr[0]);

``

`` int *low = ( int *) malloc ( sizeof ( int )*n);

``

`` constructLowerArray(arr, low, n);

``

`` cout << "Following is the constructed smaller count array" ;

`` printArray(low, n);

``

`` return 0;

}

Output:

Following is the constructed smaller count array 3 1 2 2 2 0 0

Time Complexity: O(nLogn)
Auxiliary Space: O(n)