Sort elements by frequency

Hello Everyone,

Print the elements of an array in the decreasing frequency if 2 numbers have same frequency then print the one which came first.

Examples:

Input: arr[] = {2, 5, 2, 8, 5, 6, 8, 8}
Output: arr[] = {8, 8, 8, 2, 2, 5, 5, 6}

Input: arr[] = {2, 5, 2, 6, -1, 9999999, 5, 8, 8, 8}
Output: arr[] = {8, 8, 8, 2, 2, 5, 5, 6, -1, 9999999}

METHOD 1 (Use Sorting)

  • Use a sorting algorithm to sort the elements O(nlogn)
  • Scan the sorted array and construct a 2D array of element and count O(n).
  • Sort the 2D array according to count O(nlogn).

Example:

Input 2 5 2 8 5 6 8 8 After sorting we get 2 2 5 5 6 8 8 8 Now construct the 2D array as 2, 2 5, 2 6, 1 8, 3 Sort by count 8, 3 2, 2 5, 2 6, 1

How to maintain the order of elements if the frequency is the same?

The above approach doesn’t make sure order of elements if the frequency is the same. To handle this, we should use indexes in step 3, if two counts are same then we should first process(or print) the element with a lower index. In step 1, we should store the indexes instead of elements.

Input 5 2 2 8 5 6 8 8 After sorting we get Element 2 2 5 5 6 8 8 8 Index 1 2 0 4 5 3 6 7 Now construct the 2D array as Index, Count 1, 2 0, 2 5, 1 3, 3 Sort by count (consider indexes in case of tie) 3, 3 0, 2 1, 2 5, 1 Print the elements using indexes in the above 2D array.

Below is the implementation of above approach –

// Sort elements by frequency. If two elements have same

// count, then put the elements that appears first

#include <bits/stdc++.h>

using namespace std;

// Used for sorting

struct ele {

int count, index, val;

};

// Used for sorting by value

bool mycomp( struct ele a, struct ele b)

{

return (a.val < b.val);

}

// Used for sorting by frequency. And if frequency is same,

// then by appearance

bool mycomp2( struct ele a, struct ele b)

{

if (a.count != b.count)

return (a.count < b.count);

else

return a.index > b.index;

}

void sortByFrequency( int arr[], int n)

{

struct ele element[n];

for ( int i = 0; i < n; i++) {

// Fill Indexes

element[i].index = i;

// Initialize counts as 0

element[i].count = 0;

// Fill values in structure

// elements

element[i].val = arr[i];

}

/* Sort the structure elements according to value,

we used stable sort so relative order is maintained.

*/

stable_sort(element, element + n, mycomp);

/* initialize count of first element as 1 */

element[0].count = 1;

/* Count occurrences of remaining elements */

for ( int i = 1; i < n; i++) {

if (element[i].val == element[i - 1].val) {

element[i].count += element[i - 1].count + 1;

/* Set count of previous element as -1, we are

doing this because we'll again sort on the

basis of counts (if counts are equal than on

the basis of index)*/

element[i - 1].count = -1;

/* Retain the first index (Remember first index

is always present in the first duplicate we

used stable sort. */

element[i].index = element[i - 1].index;

}

/* Else If previous element is not equal to current

so set the count to 1 */

else

element[i].count = 1;

}

/* Now we have counts and first index for each element

so now sort on the basis of count and in case of tie

use index to sort.*/

stable_sort(element, element + n, mycomp2);

for ( int i = n - 1, index = 0; i >= 0; i--)

if (element[i].count != -1)

for ( int j = 0; j < element[i].count; j++)

arr[index++] = element[i].val;

}

// Driver program

int main()

{

int arr[] = { 2, 5, 2, 6, -1, 9999999, 5, 8, 8, 8 };

int n = sizeof (arr) / sizeof (arr[0]);

sortByFrequency(arr, n);

for ( int i = 0; i < n; i++)

cout << arr[i] << " " ;

return 0;

}

Output:

8 8 8 2 2 5 5 6 -1 9999999

METHOD 2 (Use Hashing and Sorting)
Using a hashing mechanism, we can store the elements (also first index) and their counts in a hash. Finally, sort the hash elements according to their counts.
Below is the implementation of above approach –

// CPP program for above approach

#include <bits/stdc++.h>

using namespace std;

// Compare function

bool fcompare(pair< int , pair< int , int > > p,

pair< int , pair< int , int > > p1)

{

if (p.second.second != p1.second.second)

return (p.second.second > p1.second.second);

else

return (p.second.first < p1.second.first);

}

void sortByFrequency( int arr[], int n)

{

unordered_map< int , pair< int , int > > hash; // hash map

for ( int i = 0; i < n; i++) {

if (hash.find(arr[i]) != hash.end())

hash[arr[i]].second++;

else

hash[arr[i]] = make_pair(i, 1);

} // store the count of all the elements in the hashmap

// Iterator to Traverse the Hashmap

auto it = hash.begin();

// Vector to store the Final Sortted order

vector<pair< int , pair< int , int > > > b;

for (it; it != hash.end(); ++it)

b.push_back(make_pair(it->first, it->second));

sort(b.begin(), b.end(), fcompare);

// Printing the Sorted sequence

for ( int i = 0; i < b.size(); i++) {

int count = b[i].second.second;

while (count--)

cout << b[i].first << " " ;

}

}

// Driver Function

int main()

{

int arr[] = { 2, 5, 2, 6, -1, 9999999, 5, 8, 8, 8 };

int n = sizeof (arr) / sizeof (arr[0]);

sortByFrequency(arr, n);

return 0;

}

Output:

8 8 8 2 2 5 5 6 -1 9999999