Hello Everyone,
Given an array of integers, sort the array according to frequency of elements. For example, if the input array is {2, 3, 2, 4, 5, 12, 2, 3, 3, 3, 12}, then modify the array to {3, 3, 3, 3, 2, 2, 2, 12, 12, 4, 5}.
We have already discussed all methods for sorting according to frequency. In this post, method 2 is discussed in detail and C++ implementation for the same is provided.
Following is detailed algorithm.
- Create a BST and while creating BST maintain the count i,e frequency of each coming element in same BST. This step may take O(nLogn) time if a self balancing BST is used.
- Do Inorder traversal of BST and store every element and count of each element in an auxiliary array. Let us call the auxiliary array as ‘count[]’. Note that every element of this array is element and frequency pair. This step takes O(n) time.
- Sort ‘count[]’ according to frequency of the elements. This step takes O(nLohn) time if a O(nLogn) sorting algorithm is used.
- Traverse through the sorted array ‘count[]’. For each element x, print it ‘freq’ times where ‘freq’ is frequency of x. This step takes O(n) time.
The overall time complexity of the algorithm can be minimum O(nLogn) if we use a O(nLogn) sorting algorithm and use a self-balancing BST with O(Logn) insert operation.
Following is the implementation of the above algorithm.
// Implementation of above algorithm in C++.
#include <iostream>
#include <stdlib.h>
using
namespace
std;
/* A BST node has data, freq, left and right pointers */
struct
BSTNode
{
struct
BSTNode *left;
int
data;
int
freq;
struct
BSTNode *right;
};
// A structure to store data and its frequency
struct
dataFreq
{
int
data;
int
freq;
};
/* Function for qsort() implementation. Compare frequencies to
sort the array according to decreasing order of frequency */
int
compare(
const
void
*a,
const
void
*b)
{
return
( (*(
const
dataFreq*)b).freq - (*(
const
dataFreq*)a).freq );
}
/* Helper function that allocates a new node with the given data,
frequency as 1 and NULL left and right pointers.*/
BSTNode* newNode(
int
data)
{
struct
BSTNode* node =
new
BSTNode;
node->data = data;
node->left = NULL;
node->right = NULL;
node->freq = 1;
return
(node);
}
// A utility function to insert a given key to BST. If element
// is already present, then increases frequency
BSTNode *insert(BSTNode *root,
int
data)
{
if
(root == NULL)
return
newNode(data);
if
(data == root->data)
// If already present
root->freq += 1;
else
if
(data < root->data)
root->left = insert(root->left, data);
else
root->right = insert(root->right, data);
return
root;
}
// Function to copy elements and their frequencies to count[].
void
store(BSTNode *root, dataFreq count[],
int
*index)
{
// Base Case
if
(root == NULL)
return
;
// Recur for left substree
store(root->left, count, index);
// Store item from root and increment index
count[(*index)].freq = root->freq;
count[(*index)].data = root->data;
(*index)++;
// Recur for right subtree
store(root->right, count, index);
}
// The main function that takes an input array as an argument
// and sorts the array items according to frequency
void
sortByFrequency(
int
arr[],
int
n)
{
// Create an empty BST and insert all array items in BST
struct
BSTNode *root = NULL;
for
(
int
i = 0; i < n; ++i)
root = insert(root, arr[i]);
// Create an auxiliary array 'count[]' to store data and
// frequency pairs. The maximum size of this array would
// be n when all elements are different
dataFreq count[n];
int
index = 0;
store(root, count, &index);
// Sort the count[] array according to frequency (or count)
qsort
(count, index,
sizeof
(count[0]), compare);
// Finally, traverse the sorted count[] array and copy the
// i'th item 'freq' times to original array 'arr[]'
int
j = 0;
for
(
int
i = 0; i < index; i++)
{
for
(
int
freq = count[i].freq; freq > 0; freq--)
arr[j++] = count[i].data;
}
}
// A utility function to print an array of size n
void
printArray(
int
arr[],
int
n)
{
for
(
int
i = 0; i < n; i++)
cout << arr[i] <<
" "
;
cout << endl;
}
/* Driver program to test above functions */
int
main()
{
int
arr[] = {2, 3, 2, 4, 5, 12, 2, 3, 3, 3, 12};
int
n =
sizeof
(arr)/
sizeof
(arr[0]);
sortByFrequency(arr, n);
printArray(arr, n);
return
0;
}
Output:
3 3 3 3 2 2 2 12 12 5 4