Largest Sum Contiguous Subarray

Hello Everyone,

Write an efficient program to find the sum of contiguous subarray within a one-dimensional array of numbers that has the largest sum.

Kadane’s Algorithm:

Initialize: max_so_far = INT_MIN max_ending_here = 0 Loop for each element of the array (a) max_ending_here = max_ending_here + a[i] (b) if(max_so_far < max_ending_here) max_so_far = max_ending_here (c) if(max_ending_here < 0) max_ending_here = 0 return max_so_far

Explanation:
The simple idea of Kadane’s algorithm is to look for all positive contiguous segments of the array (max_ending_here is used for this). And keep track of maximum sum contiguous segment among all positive segments (max_so_far is used for this). Each time we get a positive-sum compare it with max_so_far and update max_so_far if it is greater than max_so_far

Lets take the example: {-2, -3, 4, -1, -2, 1, 5, -3} max_so_far = max_ending_here = 0 for i=0, a[0] = -2 max_ending_here = max_ending_here + (-2) Set max_ending_here = 0 because max_ending_here < 0 for i=1, a[1] = -3 max_ending_here = max_ending_here + (-3) Set max_ending_here = 0 because max_ending_here < 0 for i=2, a[2] = 4 max_ending_here = max_ending_here + (4) max_ending_here = 4 max_so_far is updated to 4 because max_ending_here greater than max_so_far which was 0 till now for i=3, a[3] = -1 max_ending_here = max_ending_here + (-1) max_ending_here = 3 for i=4, a[4] = -2 max_ending_here = max_ending_here + (-2) max_ending_here = 1 for i=5, a[5] = 1 max_ending_here = max_ending_here + (1) max_ending_here = 2 for i=6, a[6] = 5 max_ending_here = max_ending_here + (5) max_ending_here = 7 max_so_far is updated to 7 because max_ending_here is greater than max_so_far for i=7, a[7] = -3 max_ending_here = max_ending_here + (-3) max_ending_here = 4

Program:

// C++ program to print largest contiguous array sum

#include<iostream>

#include<climits>

using namespace std;

int maxSubArraySum( int a[], int size)

{

int max_so_far = INT_MIN, max_ending_here = 0;

for ( int i = 0; i < size; i++)

{

max_ending_here = max_ending_here + a[i];

if (max_so_far < max_ending_here)

max_so_far = max_ending_here;

if (max_ending_here < 0)

max_ending_here = 0;

}

return max_so_far;

}

/*Driver program to test maxSubArraySum*/

int main()

{

int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};

int n = sizeof (a)/ sizeof (a[0]);

int max_sum = maxSubArraySum(a, n);

cout << "Maximum contiguous sum is " << max_sum;

return 0;

}

Output:

Maximum contiguous sum is 7