Feedforward Neural Network – Artificial Neuron

This neural network is one of the simplest forms of ANN, where the data or the input travels in one direction. The data passes through the input nodes and exit on the output nodes. This neural network may or may not have the hidden layers. In simple words, it has a front propagated wave and no backpropagation by using a classifying activation function usually.

Below is a Single layer feed-forward network. Here, the sum of the products of inputs and weights are calculated and fed to the output. The output is considered if it is above a certain value i.e threshold(usually 0) and the neuron fires with an activated output (usually 1) and if it does not fire, the deactivated value is emitted (usually -1).
Application of Feedforward neural networks are found in computer vision and speech recognition where classifying the target classes is complicated. These kind of Neural Networks are responsive to noisy data and easy to maintain. This paper explains the usage of Feed Forward Neural Network. The X-Ray image fusion is a process of overlaying two or more images based on the edges. Here is a visual description.
Artificial neural networks are computational models that work similarly to the functioning of a human nervous system. There are several kinds of artificial neural networks. These types of networks are implemented based on the mathematical operations and a set of parameters required to determine the output. Let’s look at some of the neural networks