Explain the parametric models with an example

Parametric models

  1. Parametric models are those with a finite number of parameters. To predict new data, you only need to know the parameters of the model. Examples include linear regression, logistic regression, and linear SVMs.

Non-parametric models are those with an unbounded number of parameters, allowing for more flexibility. To predict new data, you need to know the parameters of the model and the state of the data that has been observed. Examples include decision trees, k-nearest neighbors, and topic models using latent Dirichlet analysis.

In machine learning, a parametric model is any model that captures all the information about its predictions within a finite set of parameters. Sometimes the model must be trained to select its parameters, as in the case of neural networks. Sometimes the parameters are selected by hand or through a simple calculation process. Given the multiple definitions of the word “model,” a parametric model can output either a probability or a value (in some cases a classification).

The vast majority of machine learning models one deals with on a practical basis are parametric, because relying on non-parametric models generally adds an assumption of too much simplicity in the underlying data.