A Binary Heap is a Binary Tree with following properties.
- It’s a complete tree (All levels are completely filled except possibly the last level and the last level has all keys as left as possible). This property of Binary Heap makes them suitable to be stored in an array.
- A Binary Heap is either Min Heap or Max Heap. In a Min Binary Heap, the key at root must be minimum among all keys present in Binary Heap. The same property must be recursively true for all nodes in Binary Tree. Max Binary Heap is similar to MinHeap.
How is Binary Heap represented?
A Binary Heap is a Complete Binary Tree. A binary heap is typically represented as an array.
- The root element will be at Arr[0].
- Below table shows indexes of other nodes for the ith node, i.e., Arr[i]:
Arr[(i-1)/2] | Returns the parent node |
---|---|
Arr[(2*i)+1] | Returns the left child node |
Arr[(2*i)+2] | Returns the right child node |
The traversal method use to achieve Array representation is Level Order
Operations on Min Heap:
1) getMini(): It returns the root element of Min Heap. Time Complexity of this operation is O(1).
2) extractMin(): Removes the minimum element from MinHeap. Time Complexity of this Operation is O(Logn) as this operation needs to maintain the heap property (by calling heapify()) after removing root.
3) decreaseKey(): Decreases value of key. The time complexity of this operation is O(Logn). If the decreases key value of a node is greater than the parent of the node, then we don’t need to do anything. Otherwise, we need to traverse up to fix the violated heap property.
4) insert(): Inserting a new key takes O(Logn) time. We add a new key at the end of the tree. IF new key is greater than its parent, then we don’t need to do anything. Otherwise, we need to traverse up to fix the violated heap property.
5) delete(): Deleting a key also takes O(Logn) time. We replace the key to be deleted with minum infinite by calling decreaseKey(). After decreaseKey(), the minus infinite value must reach root, so we call extractMin() to remove the key.
Below is the implementation of basic heap operations.
// C# program to demonstrate common
// Binary Heap Operations - Min Heap
using
System;
// A class for Min Heap
class
MinHeap{
// To store array of elements in heap
public
int
[] heapArray{
get
;
set
; }
// max size of the heap
public
int
capacity{
get
;
set
; }
// Current number of elements in the heap
public
int
current_heap_size{
get
;
set
; }
// Constructor
public
MinHeap(
int
n)
{
capacity = n;
heapArray =
new
int
[capacity];
current_heap_size = 0;
}
// Swapping using reference
public
static
void
Swap<T>(
ref
T lhs,
ref
T rhs)
{
T temp = lhs;
lhs = rhs;
rhs = temp;
}
// Get the Parent index for the given index
public
int
Parent(
int
key)
{
return
(key - 1) / 2;
}
// Get the Left Child index for the given index
public
int
Left(
int
key)
{
return
2 * key + 1;
}
// Get the Right Child index for the given index
public
int
Right(
int
key)
{
return
2 * key + 2;
}
// Inserts a new key
public
bool
insertKey(
int
key)
{
if
(current_heap_size == capacity)
{
// heap is full
return
false
;
}
// First insert the new key at the end
int
i = current_heap_size;
heapArray[i] = key;
current_heap_size++;
// Fix the min heap property if it is violated
while
(i != 0 && heapArray[i] <
heapArray[Parent(i)])
{
Swap(
ref
heapArray[i],
ref
heapArray[Parent(i)]);
i = Parent(i);
}
return
true
;
}
// Decreases value of given key to new_val.
// It is assumed that new_val is smaller
// than heapArray[key].
public
void
decreaseKey(
int
key,
int
new_val)
{
heapArray[key] = new_val;
while
(key != 0 && heapArray[key] <
heapArray[Parent(key)])
{
Swap(
ref
heapArray[key],
ref
heapArray[Parent(key)]);
key = Parent(key);
}
}
// Returns the minimum key (key at
// root) from min heap
public
int
getMin()
{
return
heapArray[0];
}
// Method to remove minimum element
// (or root) from min heap
public
int
extractMin()
{
if
(current_heap_size <= 0)
{
return
int
.MaxValue;
}
if
(current_heap_size == 1)
{
current_heap_size--;
return
heapArray[0];
}
// Store the minimum value,
// and remove it from heap
int
root = heapArray[0];
heapArray[0] = heapArray[current_heap_size - 1];
current_heap_size--;
MinHeapify(0);
return
root;
}
// This function deletes key at the
// given index. It first reduced value
// to minus infinite, then calls extractMin()
public
void
deleteKey(
int
key)
{
decreaseKey(key,
int
.MinValue);
extractMin();
}
// A recursive method to heapify a subtree
// with the root at given index
// This method assumes that the subtrees
// are already heapified
public
void
MinHeapify(
int
key)
{
int
l = Left(key);
int
r = Right(key);
int
smallest = key;
if
(l < current_heap_size &&
heapArray[l] < heapArray[smallest])
{
smallest = l;
}
if
(r < current_heap_size &&
heapArray[r] < heapArray[smallest])
{
smallest = r;
}
if
(smallest != key)
{
Swap(
ref
heapArray[key],
ref
heapArray[smallest]);
MinHeapify(smallest);
}
}
// Increases value of given key to new_val.
// It is assumed that new_val is greater
// than heapArray[key].
// Heapify from the given key
public
void
increaseKey(
int
key,
int
new_val)
{
heapArray[key] = new_val;
MinHeapify(key);
}
// Changes value on a key
public
void
changeValueOnAKey(
int
key,
int
new_val)
{
if
(heapArray[key] == new_val)
{
return
;
}
if
(heapArray[key] < new_val)
{
increaseKey(key, new_val);
}
else
{
decreaseKey(key, new_val);
}
}
}
static
class
MinHeapTest{
// Driver code
public
static
void
Main(
string
[] args)
{
MinHeap h =
new
MinHeap(11);
h.insertKey(3);
h.insertKey(2);
h.deleteKey(1);
h.insertKey(15);
h.insertKey(5);
h.insertKey(4);
h.insertKey(45);
Console.Write(h.extractMin() +
" "
);
Console.Write(h.getMin() +
" "
);
h.decreaseKey(2, 1);
Console.Write(h.getMin());
}
}
Output:
2 4 1