Are Gaussian Naive Bayes the same as binomial Naive Bayes?

Binomial Naive Bayes: It assumes that all our features are binary such that they take only two values. Means 0s can represent “word does not occur in the document” and 1s as “word occurs in the document”.

Gaussian Naive Bayes: Because of the assumption of the normal distribution, Gaussian Naive Bayes is used in cases when all our features are continuous. For example in Iris dataset features are sepal width, petal width, sepal length, petal length. So its features can have different values in the data set as width and length can vary. We can’t represent features in terms of their occurrences. This means data is continuous. Hence we use Gaussian Naive Bayes here.