A Gentle Introduction to Evaluating Limits

Rules for Limits

Limits are easy to evaluate if we know a few simple principles, which are listed below. All these rules are based on the known limits of two functions f(x) and g(x), when x approaches a point k:

Simple Rules for Evaluating Limits

Rules for Evaluating Limits

Examples of Using Rules to Evaluate Limits

Examples of Evaluating Limits Using Simple Rules

Examples of Evaluating Limits Using Simple Rules

Here are a few examples that use the basic rules to evaluate a limit. Note that these rules apply to functions which are defined at a point as x approaches that point.

Limits for Polynomials

Examples 1 and 2 are that of polynomials. From the rules for limits, we can see that for any polynomial, the limit of the polynomial when x approaches a point k is equal to the value of the polynomial at k. It can be written as:

Hence, we can evaluate the limit of a polynomial via direct substitution, e.g.

lim(x→1) x^4+3x^3+2 = 1^4+3(1)^3+2 = 6

Limits for Rational Functions

For rational functions that involve fractions, there are two cases. One case is evaluating the limit when x approaches a point and the function is defined at that point. The other case involves computing the limit when x approaches a point and the function is undefined at that point.

Case 1: Function is Defined

Similar to the case of polynomials, whenever we have a function, which is a rational expression of the form f(x)/g(x) and the denominator is non-zero at a point then:

lim(x→k) f(x)/g(x) = f(k)/g(k) if g(k)≠0

We can therefore evaluate this limit via direct substitution. For example:

lim(x→0)(x^2+1)/(x-1) = -1

Here, we can apply the quotient rule or easier still, substitute x=0 to evaluate the limit. However, this function has no limit when x approaches 1. See the first graph in the figure below.

Case 2: Function is Undefined

Let’s look at another example:

lim(x→2)(x^2-4)/(x-2)

At x=2 we are faced with a problem. The denominator is zero, and hence the function is undefined at x=2. We can see from the figure that the graph of this function and (x+2) is the same, except at the point x=2, where there is a hole. In this case, we can cancel out the common factors and still evaluate the limit for (x→2) as:

lim(x→2)(x^2-4)/(x-2) = lim(x→2)(x-2)(x+2)/(x-2) = lim(x→2)(x+2) = 4

Following image shows the above two examples as well as a third similar example of g_3(x):

Limits for rational functions