Define and explain the concept of Inductive Bias with some examples

Inductive Bias is a set of assumptions that humans use to predict outputs given inputs that the learning algorithm has not encountered yet. When we are trying to learn Y from X and the hypothesis space for Y is infinite, we need to reduce the scope by our beliefs/assumptions about the hypothesis space which is also called inductive bias. Through these assumptions, we constrain our hypothesis space and also get the capability to incrementally test and improve on the data using hyper-parameters. Examples:

  1. We assume that Y varies linearly with X while applying Linear regression.
  2. We assume that there exists a hyperplane separating negative and positive examples.