Suppose you have a sorted array of infinite numbers, how would you search an element in the array? Since array is sorted, the first thing clicks into mind is binary search, but the problem here is that we don’t know size of array.
If the array is infinite, that means we don’t have proper bounds to apply binary search. So in order to find position of key, first we find bounds and then apply binary search algorithm.
Let low be pointing to 1st element and high pointing to 2nd element of array, Now compare key with high index element,
->if it is greater than high index element then copy high index in low index and double the high index.
->if it is smaller, then apply binary search on high and low indices found.
Below are implementations of above algorithm
// C# program to demonstrate working of an
// algorithm that finds an element in an
// array of infinite size
using
System;
class
GFG {
// Simple binary search algorithm
static
int
binarySearch(
int
[]arr,
int
l,
int
r,
int
x)
{
if
(r >= l)
{
int
mid = l + (r - l)/2;
if
(arr[mid] == x)
return
mid;
if
(arr[mid] > x)
return
binarySearch(arr, l,
mid-1, x);
return
binarySearch(arr, mid+1,
r, x);
}
return
-1;
}
// Method takes an infinite size array
// and a key to be searched and returns
// its position if found else -1. We
// don't know size of arr[] and we can
// assume size to be infinite in this
// function.
// NOTE THAT THIS FUNCTION ASSUMES
// arr[] TO BE OF INFINITE SIZE
// THEREFORE, THERE IS NO INDEX OUT
// OF BOUND CHECKING
static
int
findPos(
int
[]arr,
int
key)
{
int
l = 0, h = 1;
int
val = arr[0];
// Find h to do binary search
while
(val < key)
{
l = h;
// store previous high
h = 2 * h;
// double high index
val = arr[h];
// update new val
}
// at this point we have updated low
// and high indices, thus use binary
// search between them
return
binarySearch(arr, l, h, key);
}
// Driver method to test the above
// function
public
static
void
Main()
{
int
[]arr =
new
int
[]{3, 5, 7, 9,
10, 90, 100, 130, 140, 160, 170};
int
ans = findPos(arr, 10);
if
(ans == -1)
Console.Write(
"Element not found"
);
else
Console.Write(
"Element found at "
+
"index "
+ ans);
}
}
Output:
Element found at index 4
Let p be the position of element to be searched. Number of steps for finding high index ‘h’ is O(Log p). The value of ‘h’ must be less than 2p. The number of elements between h/2 and h must be O(p). Therefore, time complexity of Binary Search step is also O(Log p) and overall time complexity is 2O(Log p) which is O(Log p).